中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2024, Vol. 50 ›› Issue (3): 23-32.doi: 10.3969/j.issn.1674 1579.2024.03.003

• 论文与报告 • 上一篇    下一篇

火星气动捕获能观性分析与自主导航算法

  

  1. 中国空间技术研究院 钱学森空间技术实验室
  • 出版日期:2024-06-25 发布日期:2024-09-27
  • 基金资助:
    国家重点研发计划变革性技术项目(2018YFA0703800)

Observability Analysis and Autonomous Navigation Algorithm for Mars Aerocapture

  • Online:2024-06-25 Published:2024-09-27

摘要: 研究火星气动捕获过程中探测器的能观性与导航滤波算法设计问题.采用基于李导数的方法对气动捕获过程进行了能观性分析,在考虑大气密度不确定性的条件下进行了能观度计算.针对系统模型的非线性和大气密度的不确定性,给出参数时变条件下施密特卡尔曼滤波的无偏性证明,提出了扩展施密特 卡尔曼滤波(extended Schmidt Kalman filter,ESKF)算法,有效提升了气动捕获期间的状态估计精度.通过仿真验证,ESKF算法与传统方法相比显示出更优的估计效果,为火星气动捕获任务的实施提供了坚实的理论与方法支持.

关键词: 气动捕获, 能观性分析, 参数不确定, 施密特卡尔曼滤波

Abstract: The observability analysis and navigation filtering algorithms during Mars aerocapture are studied. The observability of the system is analyzed using a method based on Lie derivatives, with the effects of atmospheric density uncertainty on the system's observability degree being considered. The unbiasedness of the Schmidt Kalman Filter under the condition of time varying parameters is proven, in response to the system model nonlinearity and atmospheric density uncertainty. The Extended Schmidt Kalman Filter (ESKF) algorithm is introduced, which effectively improves the accuracy of state estimation during aerocapture. Through simulation verification, the ESKF algorithm shows better estimation performance compared to traditional methods, providing effective theoretical and methodological support for the execution of Mars aerocapture missions.

Key words: aerocapture, observability analysis, parameter uncertainty, Schmidt Kalman filter

中图分类号: 

  • V448.2